
Learn Pascal Programming Tutorial
Lesson 1 - Introduction to Pascal
About Pascal
The Pascal programming language was created by Niklaus Wirth in 1970. It was
named after Blaise Pascal, a famous French Mathematician. It was made as a
language to teach programming and to be reliable and efficient. Pascal has since
become more than just an academic language and is now used commercially.

What you will need
Before you start learning Pascal, you will need a Pascal compiler. This tutorial uses
the Free Pascal Compiler. You can find a list of other Pascal compilers at
TheFreeCountry's Pascal compiler list.

Your first program
The first thing to do is to either open your IDE if your compiler comes with one or
open a text editor.

We always start a program by typing its name. Type program and the name of the
program next to it. We will call our first program "Hello" because it is going to print
the words "Hello world" on the screen.

program Hello;

Next we will type begin and end. We are going to type the main body of the program
between these 2 keywords. Remember to put the full stop after the end.

program Hello;

begin
end.

The Write command prints words on the screen.

program Hello;

begin
 Write('Hello world');
end.

You will see that the "Hello world" is between single quotes. This is because it is
what is called a string. All strings must be like this. The semi-colon at the end of the
line is a statement separator. You must always remember to put it at the end of the
line.

http://www.freepascal.org/
http://www.thefreecountry.com/compilers/pascal.shtml

The Readln command will now be used to wait for the user to press enter before
ending the program.

program Hello;

begin
 Write('Hello world');
 Readln;
end.

You must now save your program as hello.pas.

Compiling
Our first program is now ready to be compiled. When you compile a program, the
compiler reads your source code and turns it into an executable file. If you are using
an IDE then pressing CTRL+F9 is usually used to compile and run the program. If
you are compiling from the command line with Free Pascal then enter the following:

fpc hello.pas

If you get any errors when you compile it then you must go over this lesson again to
find out where you made them. IDE users will find that their programs compile and
run at the same time. Command line users must type the name of the program in at
the command prompt to run it.

You should see the words "Hello world" when you run your program and pressing
enter will exit the program. Congratulations! You have just made your first Pascal
program.

More commands
Writeln is just like Write except that it moves the cursor onto the next line after it has
printed the words. Here is a program that will print "Hello" and then "world" on the
next line:

program Hello;

begin
 Writeln('Hello');
 Write('world');
 Readln;
end.

If you want to skip a line then just use Writeln by itself without any brackets.

Using commands from units
The commands that are built into your Pascal compiler are very basic and we will
need a few more. Units can be included in a program to give you access to more

commands. The crt unit is one of the most useful. The ClrScr command in the crt unit
clears the screen. Here is how you use it:

program Hello;

uses
 crt;

begin
 ClrScr;
 Write('Hello world');
 Readln;
end.

Comments
Comments are things that are used to explain what parts of a program do.
Comments are ignored by the compiler and are only there for the people who use
the source code. Comments must be put between curly brackets. You should always
have a comment at the top of your program to say what it does as well as comments
for any code that is difficult to understand. Here is an example of how to comment
the program we just made:

{This program will clear the screen, print "Hello world" and wait for the
user to press enter.}

program Hello;

uses
 crt;

begin
 ClrScr;{Clears the screen}
 Write('Hello world');{Prints "Hello world"}
 Readln;{Waits for the user to press enter}
end.

Learn Pascal Programming Tutorial
Lesson 2 - Colors, Coordinates,
Windows and Sound
Colors
To change the color of the text printed on the screen we use the TextColor
command.

program Colors;

uses
 crt;

begin
 TextColor(Red);
 Writeln('Hello');
 TextColor(White);
 Writeln('world');
end.

The TextBackground command changes the color of the background of text. If you
want to change the whole screen to a certain color then you must use ClrScr.

program Colors;

uses
 crt;

begin
 TextBackground(Red);
 Writeln('Hello');
 TextColor(White);
 ClrScr;
end.

Screen coordinates
You can put the cursor anywhere on the screen using the GoToXY command. In
DOS, the screen is 80 characters wide and 25 characters high. The height and width
varies on other platforms. You may remember graphs from Maths which have a X
and a Y axis. Screen coordinates work in a similar way. Here is an example of how
to move the cursor to the 10th column in the 5th row.

program Coordinates;

uses
 crt;

begin
 GoToXY(10,5);

 Writeln('Hello');
end.

Windows
Windows let you define a part of the screen that your output will be confined to. If
you create a window and clear the screen it will only clear what is in the window. The
Window command has 4 parameters which are the top left coordinates and the
bottom right coordinates.

program Coordinates;

uses
 crt;

begin
 Window(1,1,10,5);
 TextBackground(Blue);
 ClrScr;
end.

Using window(1,1,80,25) will set the window back to the normal size.

Sound
The Sound command makes a sound at the frequency you give it. It does not stop
making a sound until the NoSound command is used. The Delay command pauses a
program for the amount of milliseconds you tell it to. Delay is used between Sound
and NoSound to make the sound last for a certain amount of time.

program Sounds;

uses
 crt;

begin
 Sound(1000);
 Delay(1000);
 NoSound;
end.

Learn Pascal Programming Tutorial
Lesson 3 - Variables and Constants
What are variables?
Variables are names given to blocks of the computer's memory. The names are used
to store values in these blocks of memory.

Variables can hold values which are either numbers, strings or Boolean. We already
know what numbers are. Strings are made up of letters. Boolean variables can have
one of two values, either True or False.

Using variables
You must always declare a variable before you use it. We use the var statement to
do this. You must also choose what type of variable it is. Here is a table of the
different variable types:

Byte 0 to 255
Word 0 to 65535
ShortInt -128 to 127
Integer -32768 to 32767
LongInt -4228250000 to 4228249000
Real floating point values
Char 1 character
String up to 255 characters
Boolean true or false

Here is an example of how to declare an integer variable named i:

program Variables;

var
 i: Integer;

begin
end.

To assign a value to a variable we use :=.

program Variables;

var
 i: Integer;

begin

 i := 5;
end.

You can create 2 or more variables of the same type if you seperate their names
with commas. You can also create variables of a different type without the need for
another var statemtent.

program Variables;

var
 i, j: Integer;
 s: String;

begin
end.

When you assign a value to a string variable, you must put it between single quotes.
Boolean variables can only be assigned the values True and False.

program Variables;

var
 i: Integer;
 s: String;
 b: Boolean;

begin
 i := -3;
 s := 'Hello';
 b := True;
end.

Calculations with variables
Variables can be used in calculations. For example you could assign the value to a
variable and then add the number 1 to it. Here is a table of the operators that can be
used:

+ Add
- Subtract
* Multiply
/ Floating Point Divide
div Integer Divide
mod Remainder of Integer Division

The following example shows a few calculations that can be done:

program Variables;

var
 Num1, Num2, Ans: Integer;

begin
 Ans := 1 + 1;
 Num1 := 5;
 Ans := Num1 + 3;
 Num2 := 2;
 Ans := Num1 - Num2;
 Ans := Ans * Num1;
end.

Strings hold characters. Characters include the the letters of the alphabet as well as
special characters and even numbers. It is important to understand that integer
numbers and string numbers are different things. You can add strings together as
well. All that happens is it joins the 2 strings. If you add the strings '1' and '1' you will
get '11' and not 2.

program Variables;

var
 s: String;

begin
 s := '1' + '1';
end.

You can read vales from the keyboard into variables using Readln and ReadKey.
ReadKey is from the crt unit and only reads 1 character. You will see that ReadKey
works differently to Readln

program Variables;

var
 i: Integer;
 s: String;
 c: Char;

begin
 Readln(i);
 Readln(s);
 c := ReadKey;
end.

Printing variables on the screen is just as easy. If you want to print variables and text
with the same Writeln then seperate them with commas.

program Variables;

var
 i: Integer;
 s: String;
begin
 i := 24;
 s := 'Hello';
 Writeln(i);
 Writeln(s,' world');
end.

Constants
Constants are like variables except that their values can't change. You assign a
value to a constant when you create it. const is used instead of var when declaring a
constant. Constants are used for values that do not change such as the value of pi.

program Variables;

const
 pi: Real = 3.14;

var
 c, d: Real;

begin
 d := 5;
 c := pi * d;
end.

Learn Pascal Programming Tutorial
Lesson 4 - String Handling and
Conversions
String Handling
You can access a specific character in a string if you put the number of the position
of that character in square brackets behind a string.

program Strings;

var
 s: String;
 c: Char;

begin
 s := 'Hello';
 c := s[1];{c = 'H'}
end.

You can get the length of a string using the Length command.

program Strings;

var
 s: String;
 l: Integer;

begin
 s ;= 'Hello';
 l := Length(s);{l = 5}
end.

To find the position of a string within a string use the Pos command.
Parameters:
1: String to find
2: String to look in

program Strings;

var
 s: String;
 p: Integer;

begin
 s := 'Hello world';
 p := Pos('world',s);
end.

The Delete command removes characters from a string.
Parameters:
1: String to delete characters from

2: Position to start deleting from
3: Amount of characters to delete

program Strings;

var
 s: String;

begin
 s ;= 'Hello';
 Delete(s,1,1);{s = 'ello'}
end.

The Copy command is like the square brackets but can access more than just one
character.
Parameters:
1: String to copy characters from
2: Position to copy from
3: Amount of characters to copy

program Strings;

var
 s, t: String;

begin
 s ;= 'Hello';
 t := Copy(s,1,3);{t = 'Hel'}
end.

Insert will insert characters into a string at a certain position.
Parameters:
1: String that will be inserted into the other string
2: String that will have characters inserted into it
3: Position to insert characters

program Strings;

var
 s: String;

begin
 s := 'Hlo';
 Insert('el',s,2);
end.

The ParamStr command will give you the command-line parameters that were
passed to a program. ParamCount will tell you how many parameters were passed
to the program. Parameter 0 is always the program's name and from 1 upwards are
the parameters that have been typed by the user.

program Strings;

var
 s: String;
 i: Integer;

begin
 s := ParamStr(0);
 i := ParamCount;
end.

Conversions
The Str command converts an integer to a string.

program Convert;

var
 s: String;
 i: Integer;

begin
 i := 123;
 Str(i,s);
end.

The Val command converts a string to an integer.

program Convert;

var
 s: String;
 i: Integer;
 e: Integer;

begin
 s := '123';
 Val(s,i,e);
end.

Int will give you the number before the comma in a real number.

program Convert;

var
 r: Real;

begin
 r := Int(3.14);
end.

Frac will give you the number after the comma in a real number.

program Convert;

var
 r: Real;

begin
 r := Frac(3.14);
end.

Round will round off a real number to the nearest integer.

program Convert;

var
 i: Integer;

begin
 i := Round(3.14);
end.

Trunc will give you the number before the comma of a real number as an integer.

program Convert;

var
 i: Integer;

begin
 i := Trunc(3.14);
end.

Computers use the numbers 0 to 255(1 byte) to represent characters internally and
these are called ASCII characters. The Ord command will convert a character to
number and the Chr command will convert a number to a character. Using a # in
front of a number will also convert it to a character.

program Convert;

var
 b: Byte;
 c: Char;

begin
 c := 'a';
 b := Ord(c);
 c := Chr(b);
 c := #123;
end.

The UpCase command changes a character from a lowercase letter to and
uppercase letter.

program Convert;

var
 c: Char;

begin
 c := 'a';
 c := UpCase(c);
end.

There is no lowercase command but you can do it by adding 32 to the ordinal value
of an uppercase letter and then changing it back to a character.

Extras
The Random command will give you a random number from 0 to the number you
give it - 1. The Random command generates the same random numbers every time
you run a program so the Randomize command is used to make them more random
by using the system clock.

program Rand;

var
 i: Integer;

begin
 Randomize;
 i := Random(101);
end.

Learn Pascal Programming Tutorial
Lesson 5 - Decisions
if then else
The if statement allows a program to make a decision based on a condition. The
following example asks the user to enter a number and tells you if the number is
greater than 5:

program Decisions;

var
 i: Integer;

begin
 Writeln('Enter a number');
 Readln(i);
 if i > 5 then
 Writeln('Greater than 5');
end.

Here is a table of the operators than can be used in conditions:

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
= Equal to
<> Not equal to

The above example only tells you if the number is greater than 5. If you want it to tell
you that it is not greater than 5 then we use else. When you use else you must not
put a semi-colon on the end of the command before it.

program Decisions;

var
 i: Integer;

begin
 Writeln('Enter a number');
 Readln(i);
 if i > 5 then
 Writeln('Greater than 5')
 else
 Writeln('Not greater than 5');
end.

If the condition is True then the then part is chosen but if it is False then the else part
is chosen. This is because the conditions such as i > 5 is a Boolean equation. You
can even assign the result of a Boolean equation to a Boolean variable.

program Decisions;

var
 i: Integer;
 b: Boolean;

begin
 Writeln('Enter a number');
 Readln(i);
 b := i > 5;
end.

If you want to use more than 1 condition then you must put each condition in
brackets. To join the conditions you can use either AND or OR. If you use AND then
both conditions must be true but if you use OR then only 1 or both of the conditions
must be true.

program Decisions;

var
 i: Integer;

begin
 Writeln('Enter a number');
 Readln(i);
 if (i > 1) and (i < 100) then
 Writeln('The number is between 1 and 100');
end.

If you want to put 2 or more commands for an if statement for both the then and the
else parts you must use begin and end; to group them together. You will see that this
end has a semi-colon after it instead of a full stop.

program Decisions;

var
 i: Integer;

begin
 Writeln('Enter a number');
 Readln(i);
 if i > 0 then
 begin
 Writeln('You entered ',i);
 Writeln('It is a positive number');
 end;
end.

You can also use if statements inside other if statements.

program Decisions;

var

 i: Integer;

begin
 Writeln('Enter a number');
 Readln(i);
 if i > 0 then
 Writeln('Positive')
 else
 if i < 0 then
 Writeln('Negative')
 else
 Writeln('Zero');
end.

Case
The case command is like an if statement but you can have many conditions with
actions for each one.

program Decisions;

uses
 crt;

var
 Choice: Char;

begin
 Writeln('Which on of these do you like?');
 Writeln('a - Apple:');
 Writeln('b - Banana:');
 Writeln('c - Carrot:');
 Choice := ReadKey;
 case Choice of
 'a': Writeln('You like apples');
 'b': Writeln('You like bananas');
 'c': Writeln('You like carrots');
 else;
 Writeln('You made an invalid choice');
 end;
end.

Learn Pascal Programming Tutorial
Lesson 6 - Loops
Loops are used when you want to repeat code a lot of times. For example, if you
wanted to print "Hello" on the screen 10 times you would need 10 Writeln
commands. You could do the same thing by putting 1 Writeln command inside a loop
which repeats itself 10 times.

There are 3 types of loops which are the for loop, while loop and repeat until loop.

For loop
The for loop uses a loop counter variable, which it adds 1 to each time, to loop from
a first number to a last number.

program Loops;

var
 i: Integer;

begin
 for i := 1 to 10 do
 Writeln('Hello');
end.

If you want to have more than 1 command inside a loop then you must put them
between a begin and an end.

program Loops;

var
 i: Integer;

begin
 for i := 1 to 10 do
 begin
 Writeln('Hello');
 Writeln('This is loop ',i);
 end;
end.

While loop
The while loop repeats while a condition is true. The condition is tested at the top of
the loop and not at any time while the loop is running as the name suggests. A while
loop does not need a loop variable but if you want to use one then you must initialize
its value before entering the loop.

program Loops;

var

 i: Integer;

begin
 i := 0;
 while i <= 10
 begin
 i := i + 1;
 Writeln('Hello');
 end;
end.

Repeat until loop
The repeat until loop is like the while loop except that it tests the condition at the
bottom of the loop. It also doesn't have to have a begin and an end if it has more
than one command inside it.

program Loops;

var
 i: Integer;

begin
 i := 0;
 repeat
 i := i + 1;
 Writeln('Hello');
 until i = 10;
end.

If you want to use more than one condition for either the while or repeat loops then
you have to put the conditions between brackets.

program Loops;

var
 i: Integer;
 s: String;

begin
 i := 0;
 repeat
 i := i + 1;
 Write('Enter a number: ');
 Readln(s);
 until (i = 10) or (s = 0);
end.

Break and Continue
The Break command will exit a loop at any time. The following program will not print
anything because it exits the loop before it gets there.

program Loops;

var

 i: Integer;

begin
 i := 0;
 repeat
 i := i + 1;
 Break;
 Writeln(i);
 until i = 10;
end.

The Continue command will jump back to the top of a loop. This example will also
not print anything but unlike the Break example, it will count all the way to 10.

program Loops;

var
 i: Integer;

begin
 i := 0;
 repeat
 i := i + 1;
 Continue;
 Writeln(i);
 until i = 10;
end.

Learn Pascal Programming Tutorial
Lesson 7 - Arrays
Arrays are variables that are made up of many variables of the same data type but
have only one name. Here is a visual representation of an array with 5 elements:

1 value 1
2 value 2
3 value 3
4 value 4
5 value 5

Arrays are declared in almost the same way as normal variables are declared except
that you have to say how many elements you want in the array.

program Arrays;

var
 a: array[1..5] of Integer;

begin
end.

We access each of the elements using the number of the elements behind it in
square brackets.

program Arrays;

var
 a: array[1..5] of Integer;

begin
 a[1] := 12;
 a[2] := 23;
 a[3] := 34;
 a[4] := 45;
 a[5] := 56;
end.

It is a lot easier when you use a loop to access the values in an array. Here is an
example of reading in 5 values into an array:

program Arrays;

var
 a: array[1..5] of Integer;
 i: Integer;

begin
 for i := 1 to 5 do

 Readln(a[i]);
end.

Sorting arrays
You will sometimes want to sort the values in an array in a certain order. To do this
you can use a bubble sort. A bubble sort is only one of many ways to sort an array.
With a bubble sort the biggest numbers are moved to the end of the array.

You will need 2 loops. One to go through each number and another to point to the
other number that is being compared. If the number is greater then it is swapped with
the other one. You will need to use a temporary variable to store values while you
are swapping them.

program Arrays;

var
 a: array[1..5] of Integer;
 i, j, tmp: Integer;

begin
 a[1] := 23;
 a[2] := 45;
 a[3] := 12;
 a[4] := 56;
 a[5] := 34;

 for i := 1 to 4 do
 for j := i + 1 to 5 do
 if a[i] > a[j] then
 begin
 tmp := a[i];
 a[i] := a[j];
 a[j] := tmp;
 end;

 for i := 1 to 5 do
 writeln(i,': ',a[i]);
end.

2D arrays
Arrays can have 2 dimensions instead of just one. In other words they can have rows
and columns instead of just rows.

 1 2 3
1 1 2 3
2 4 5 6
3 7 8 9

Here is how to declare a 2D array:

program Arrays;

var
 a: array [1..3,1..3] of Integer;

begin
end.

To access the values of a 2d array you must use 2 numbers in the square brackets.
2D arrays also require 2 loops instead of just one.

program Arrays;

var
 r, c: Integer;
 a: array [1..3,1..3] of Integer;

begin
 for r := 1 to 3 do
 for c := 1 to 3 do
 Readln(a[r,c]);
end.

You can get multi-dimensional arrays that have more than 2 dimensions but these
are not used very often so you don't need to worry about them.

Learn Pascal Programming Tutorial
Lesson 8 - Types, Records and Sets
Types
It is possible to create your own variable types using the type statement. The first
type you can make is records. Records are 2 or more variables of different types in
one. An example of how this could be used is for a student who has a student
number and a name. Here is how you create a type:

program Types;

Type
 Student = Record
 Number: Integer;
 Name: String;
 end;

begin
end.

After you have created the type you must declare a variable of that type to be able to
use it.

program Types;

Type
 StudentRecord = Record
 Number: Integer;
 Name: String;
 end;

var
 Student: StudentRecord;

begin
end.

To access the Number and Name parts of the record you must do the following:

program Types;

Type
 StudentRecord = Record
 Number: Integer;
 Name: String;
 end;

var
 Student: StudentRecord;

begin
 Student.Number := 12345;

 Student.Name := 'John Smith';
end.

The other type is a set. Sets are not very useful and anything you can do with a set
can be done just as easily in another way. The following is an example of a set
called Animal which has dog, cat and rabbit as the data it can store:

program Types;

Type
 Animal = set of (dog, cat, rabbit);

var
 MyPet: Animal;

begin
 MyPet := dog;
end.

You can't use Readln or Writeln on sets so the above way of using it is not very
useful. You can create a range of values as a set such as 'a' to 'z'. This type of set
can be used to test if a value is in that range.

program Types;

uses
 crt;

Type
 Alpha = 'a'..'z';

var
 Letter: set of Alpha;
 c: Char;

begin
 c := ReadKey;
 if c in [Letter] then
 Writeln('You entered a letter');
end.

Learn Pascal Programming Tutorial
Lesson 9 - Procedures and Functions
Procedures
Procedures are sub-programs that can be called from the main part of the program.
Procedures are declared outside of the main program body using the procedure
keyword. Procedures must also be given a unique name. Procedures have their own
begin and end. Here is an example of how to make a procedure called Hello that
prints "Hello" on the screen.

program Procedures;

procedure Hello;
begin
 Writeln('Hello');
end;

begin
end.

To use a procedure we must call it by using its name in the main body.

program Procedures;

procedure Hello;
begin
 Writeln('Hello');
end;

begin
 Hello;
end.

Procedures must always be above where they are called from. Here is an example
of a procedure that calls another procedure.

program Procedures;

procedure Hello;
begin
 Writeln('Hello');
end;

procedure HelloCall;
begin
 Hello;
end;

begin
 HelloCall;
end.

Procedures can have parameters just like the other commands we have been using.
Each parameter is given a name and type and is then used just like any other
variable. If you want to use more than one parameter then they must be separated
with semi-colons.

program Procedures;

procedure Print(s: String; i: Integer);
begin
 Writeln(s);
 Writeln(i);
end;

begin
 Print('Hello',3);
end.

Global and Local variables
The variables we have been using so far have been global because they can be
used at any time during the program. Local variables can only be used inside
procedures but the memory they use is released when the procedure is not being
used. Local variables are declared just underneath the procedure name declaration.

program Procedures;

procedure Print(s: String);
var
 i: Integer;
begin
 for i := 1 to 3 do
 Writeln(s);
end;

begin
 Print('Hello');
end.

Functions
Functions are like procedures except they return a value. The function keyword is
used instead of procedure when declaring a function. To say what data type the
return value must be you must use a colon and the name of the type after the
function's name.

program Functions;

function Add(i, j:Integer): Integer;
begin
end;

begin
end.

Assigning the value of a function to a variable make the variable equal to the return
value. If you use a function in something like Writeln it will print the return value. To
set the return value just make the name of the function equal to the value you want
to return.

program Functions;

var
 Answer: Integer;

function Add(i, j:Integer): Integer;
begin
 Add := i + j;
end;

begin
 Answer := Add(1,2);
 Writeln(Add(1,2));
end.

You can exit a procedure or function at any time by using the Exit command.

program Procedures;

procedure GetName;
var
 Name: String;
begin
 Writeln('What is your name?');
 Readln(Name);
 if Name = '' then
 Exit;
 Writeln('Your name is ',Name);
end;

begin
 GetName;
end.

Learn Pascal Programming Tutorial
Lesson 10 - Text Files
You should by now know that a text file is a file with lines of text. When you want to
access a file in Pascal you have to first create a file variable.

program Files;

var
 f: Text;

begin
end.

After the variable has been declared you must assign the file name to it.

program Files;

var
 f: Text;

begin
 Assign(f,'MyFile.txt');
end.

To create a new empty file we use the Rewrite command. This will overwrite any files
that exist with the same name.

program Files;

var
 f: Text;

begin
 Assign(f,'MyFile.txt');
 Rewrite(f);
end.

The Write and Writeln commands work on files in the same way they work on the
screen except that you must use an extra parameter to tell it to write to the file.

program Files;

var
 f: Text;

begin
 Assign(f,'MyFile.txt');
 Rewrite(f);
 Writeln(f,'A line of text');
end.

If you want to read from a file that already exists then you must use Reset instead of
Rewrite. Use Readln to read lines of text from the file. You will also need a while loop
that repeats until it comes to the end of the file.

program Files;

var
 f: Text;
 s: String;

begin
 Assign(f,'MyFile.txt');
 Reset(f);
 while not eof(f) do
 Readln(f,s);
end.

Append opens a file and lets you add more text at the end of the file.

program Files;

var
 f: Text;
 s: String;

begin
 Assign(f,'MyFile.txt');
 Append(f);
 Writeln('Some more text');
end.

No matter which one of the 3 access types you choose, you must still close a file
when you are finished using it. If you don't close it then some of the text that was
written to it might be lost.

program Files;

var
 f: Text;
 s: String;

begin
 Assign(f,'MyFile.txt');
 Append(f);
 Writeln('Some more text');
 Close(f);
end.

You can change a file's name with the Rename command and you can delete a file
with the Erase command.

program Files;

var
 f: Text;

begin

 Assign(f,'MyFile.txt');
 Rename(f,'YourFile.txt');
 Erase(f);
 Close(f);
end.

To find out if a file exists, you must first turn off error checking using the {$I-}
compiler directive. After that you must Reset the file and if IOResult = 2 then the file
was not found. If IOResult = 0 then the file was found but if it is any other value then
the program must be ended with the Halt command. IOResult loses its value once it
has been used so we also have to put that into another variable before using it. You
must also use {$I+} to turn error checking back on.

program Files;

var
 f: Text;
 IOR: Integer;

begin
 Assign(f,'MyFile.txt');
{$I-}
 Reset(f);
{$I+}
 IOR := IOResult;
 if IOR = 2 then
 Writeln('File not found');
 else
 if IOR <> 0 then
 Halt;
 Close(f);
end.

Learn Pascal Programming Tutorial
Lesson 11 - Data Files
Data files are different from text files in a few ways. Data files are random access
which means you don't have to read through them line after line but instead access
any part of the file at any time. Here is how you declare a data file:

program DataFiles;

var
 f: file of Byte;

begin
end.

We then use Assign in the same way as we do with a text file.

program DataFiles;

var
 f: file of Byte;

begin
 Assign(f,'MyFile.txt');
end.

You can use Rewrite to create a new file or overwrite an existing one. The difference
between text files and data files when using Rewrite is that data files can be read
and written to.

program DataFiles;

var
 f: file of Byte;

begin
 Assign(f,'MyFile.txt');
 Rewrite(f);
end.

Reset is the same as Rewrite except that it doesn't overwrite the file.

program DataFiles;

var
 f: file of Byte;

begin
 Assign(f,'MyFile.txt');
 Reset(f);
end.

When you write to a file using the Write command you must first put the value to be
written to the file into a variable. Before you can write to or read from a data file you

must use the Seek command to find the right place to start writing. You must also
remember that data files start from position 0 and not 1.

program DataFiles;

var
 f: file of Byte;
 b: Byte;

begin
 Assign(f,'MyFile.txt');
 Reset(f);
 b := 1;
 Seek(f,0);
 Write(f,b);
end.

The Read command is used to read from a data file.

program DataFiles;

var
 f: file of Byte;
 b: Byte;

begin
 Assign(f,'MyFile.txt');
 Reset(f);
 Seek(f,0);
 Read(f,b);
end.

You must close a data file when you are finished with it just like with text files.

program DataFiles;

var
 f: file of Byte;
 b: Byte;

begin
 Assign(f,'MyFile.txt');
 Reset(f);
 Seek(f,0);
 Read(f,b);
 Close(f);
end.

The FileSize command can be used with the FilePos command to find out when you
have reached the end of the file. FileSize returns the actual number of records which
means it starts at 1 and not 0. The FilePos command will tell at what position in the
file you are.

program DataFiles;

var
 f: file of Byte;
 b: Byte;

begin
 Assign(f,'MyFile.txt');
 Reset(f);
 while FilePos(f) <> FileSize(f) do
 begin
 Read(f,b);
 Writeln(b);
 end;
 Close(f);
end.

The Truncate command will delete everything in the file from the current position.

program DataFiles;

var
 f: file of Byte;

begin
 Assign(f,'MyFile.txt');
 Reset(f);
 Seek(f,3);
 Truncate(f);
 Close(f);
end.

One of the most useful things about data files is that you can use records with them.

program DataFiles;

type
 StudentRecord = Record
 Number: Integer;
 Name: String;

var
 Student: StudentRecord;

begin
 Assign(f,'MyFile.txt');
 Reset(f);
 Student.Number := 12345;
 Student.Name := 'John Smith';
 Write(f,Student);
 Close(f);
end.

Learn Pascal Programming Tutorial
Lesson 12 - Units
We already know that units, such as the crt unit, let you use more procedures and
functions than the built-in ones. You can make your own units which have
procedures and functions that you have made in them.

To make a unit you need to create new Pascal file which we will call MyUnit.pas. The
first line of the file should start with the unit keyword followed by the unit's name. The
unit's name and the unit's file name must be exactly the same.

unit MyUnit;

The next line is the interface keyword. After this you must put the names of the
procedures that will be made available to the program that will use your unit. For this
example we will be making a function called NewReadln which is like Readln but it
lets you limit the amount of characters that can be entered.

unit MyUnit;

interface

function NewReadln(Max: Integer): String;

The next line is implementation. This is where you will type the full code for the
procedures and functions. We will also need to use the crt unit to make NewReadln.
We end the unit just like a normal program with the end keyword.

unit MyUnit;

interface

function NewReadln(Max: Integer): String;

implementation

function NewReadln(Max: Integer): String;
var
 s: String;
 c: Char;
begin
 s := '';
 repeat
 c := ReadKey;
 if (c = #8){#8 = BACKSPACE} and (s <> '') then
 begin
 Write(#8+' '+#8);
 delete(s,length(s),1);
 end;
 if (c <> #8) and (c <> #13){#13 = ENTER} and (length(s) < Max) then
 begin
 Write(c);
 s := s + c;
 end;

 until c = #13;
 NewReadln := s;
end;

end.

Once you have saved the unit you must compile it. Now we must make the program
that uses the unit that we have just made. This time we will type MyUnit in the uses
section and then use the NewReadln function.

program MyProgram;

uses
 MyUnit;

var
 s: String;

begin
 s := NewReadln(10);
end.

Learn Pascal Programming Tutorial
Lesson 13 - Pointers
What is a pointer?
A pointer is a type of variable that stores a memory address. Because it stores a
memory address it is said to be pointing to it. There are 2 types of pointers which are
typed and untyped. A typed pointer points to a variable such as an integer. An
untyped pointer can point to any type of variable.

Declaring and using typed pointers
When you declare a typed pointer you must put a ^ in front of the variable type which
you want it to point to. Here is an example of how to declare a pointer to an integer:

program Pointers;

var
 p: ^integer;

begin
end.

The @ sign can be used in front of a variable to get its memory address. This
memory address can then be stored in a pointer because pointers store memory
addresses. Here is an example of how to store the memory address of an integer in
a pointer to an integer:

program Pointers;

var
 i: integer;
 p: ^integer;

begin
 p := @i;
end.

If you want to change the value stored at the memory address pointed at by a pointer
you must first dereference the pointer variable using a ^ after the pointer name. Here
is an example of how to change the value of an integer from 1 to 2 using a pointer:

program Pointers;

var
 i: integer;
 p: ^integer;

begin
 i := 1;
 p := @i;
 p^ := 2;

 writeln(i);
end.

You can allocate new memory to a typed pointer by using the new command. The
new command has one parameter which is a pointer. The new command gets the
memory that is the size of the variable type of the pointer and then sets the pointer to
point to the memory address of it. When you are finished using the pointer you must
use the dispose command to free the memory that was allocated to the pointer. Here
is an example:

program Pointers;

var
 p: ^integer;

begin
 new(p);
 p^ := 3;
 writeln(p^);
 dispose(p);
end.

Declaring and using untyped pointers
When you declare an untyped pointer you must use the variable type called pointer.

program Pointers;

var
 p: pointer;

begin
end.

When you allocate memory to an untyped pointer you must use the getmem
command instead of the new command and you must use freemem instead of
dispose. getmem and freemem each have a second parameter which is the size in
bytes of the amount of memory which must be allocated to the pointer. You can
either use a number for the size or you can use the sizeof function to get the size of
a specific variable type.

program Pointers;

var
 p: pointer;

begin
 getmem(p,sizeof(integer));
 freemem(p,sizeof(integer));
end.

Learn Pascal Programming Tutorial
Lesson 14 - Linked Lists
What is a linked list
A linked list is like an array except that the amount of elements in a linked list can
change unlike an array. A linked list uses pointers to point to the next or previous
element.

Single linked lists
There are 2 types of single linked lists which are called queues and stacks.

Queues
A queue is like standing in a queue at a shop. The first person that joins a queue is
the first person to be served. You must always join at the back of a queue because if
you join at the front the other people will be angry. This is called FIFO(First In First
Out).

Item 1 --> Item 2 --> Item 3 --> (Until the last item)

Each item of a linked list is a record which has the data and a pointer to the next or
previous item. Here is an example of how to declare the record for a queue and a
pointer to a queue record as well as the variables needed:

program queue;

type
 pQueue = ^tqueue;
 tQueue = record
 data: integer;
 next: pQueue;
 end;

var
 head, last, cur: pQueue;

begin
end.

We will now make 3 procedures. The first procedure will add items to the list, the
second will view the list and the third will free the memory used by the queue. Before
we make the procedures lets first take a look at the main program.

begin
 head := nil; {Set head to nil because there are no items in the queue}
 add(1) {Add 1 to the queue using the add procedure};
 add(2);
 add(3);

 view; {View all items in the queue}
 destroy; {Free the memory used by the queue}
end.

The add procedure will take an integer as a parameter and add that integer to the
end of the queue.

procedure add(i: integer);
begin
 new(cur); {Create new queue item}
 cur^.data := i; {Set the value of the queue item to i}
 cur^.next := nil; {Set the next item in the queue to nil because it
doesn't exist}
 if head = nil then {If there is no head of the queue then}
 head := cur {Current is the new head because it is the first item
being added to the list}
 else
 last^.next := cur; {Set the previous last item to current because it
is the new last item in the queue}
 last := cur; {Make the current item the last item in the queue}
end;

The view procedure uses a loop to display the data from the first item to the last item
of the queue.

procedure view;
begin
 cur := head; {Set current to the beginning of the queue}
 while cur <> nil do {While there is a current item}
 begin
 writeln(cur^.data); {Display current item}
 cur := cur^.next; {Set current to the next item in the queue}
 end;
end;

The destroy procedure will free the memory that was used by the queue.

procedure destroy;
begin
 cur := head; {Set current to the beginning of the queue}
 while cur <> nil do {While there is a item in the queue}
 begin
 cur := cur^.next; {Store the next item in current}
 dispose(head); {Free memory used by head}
 head := cur; {Set the new head of the queue to the current item}
 end;
end;

Stacks
To understand a stack you must think about a stack of plates. You can add a plate to
the top of the stack and take one off the top but you can't add or take away a plate
from the bottom without all the plates falling. This is called LIFO(Last In First Out).

Item 1 <-- Item 2 <-- Item 3 <-- (Until the last item)

When you declare the record for a stack item you must use previous instead of next.
Here is an example.

program stack;

type
 pStack = ^tStack;
 tStack = record
 data: integer;
 prev: pStack;
 end;

var
 last, cur: pStack;

begin
 last := nil;
 add(3);
 add(2);
 add(1);
 view;
 destroy;
end.

You will see that the numbers are added from 3 to 1 with a stack instead of 1 to 3.
This is because things must come off the top of the stack instead of from the head of
a queue.

The add procedure adds the item after the last item on the stack.

procedure add(i: integer);
begin
 new(cur); {Create new stack item}
 cur^.data := i; {Set item value to the parameter value}
 cur^.prev := last; {Set the previous item to the last item in the stack}
 last := cur; {Make the current item the new last item}
end;

The view and destroy procedures are almost the same as with a queue so they will
not need to be explained.

procedure view;
begin
 cur := last;
 while cur <> nil do
 begin
 writeln(cur^.data);
 cur := cur^.prev;
 end;
end;

procedure destroy;
begin
 while last <> nil do
 begin
 cur := last^.prev;
 dispose(last);
 last := cur;

 end;
end;

	Learn Pascal Programming Tutorial Lesson 1 - Introduction to Pascal
	Learn Pascal Programming Tutorial Lesson 1 - Introduction to Pascal
	About Pascal
	What you will need
	Your first program
	Compiling
	More commands
	Using commands from units
	Comments

	Learn Pascal Programming Tutorial Lesson 2 - Colors, Coordinates, Windows and Sound
	Learn Pascal Programming Tutorial Lesson 2 - Colors, Coordinates, Windows and Sound
	Colors
	Screen coordinates
	Windows
	Sound

	Learn Pascal Programming Tutorial Lesson 3 - Variables and Constants
	Learn Pascal Programming Tutorial Lesson 3 - Variables and Constants
	What are variables?
	Using variables
	Calculations with variables
	Constants

	Learn Pascal Programming Tutorial Lesson 4 - String Handling and Conversions
	Learn Pascal Programming Tutorial Lesson 4 - String Handling and Conversions
	String Handling
	Conversions
	Extras

	Learn Pascal Programming Tutorial Lesson 5 - Decisions
	Learn Pascal Programming Tutorial Lesson 5 - Decisions
	if then else
	Case

	Learn Pascal Programming Tutorial Lesson 6 - Loops
	Learn Pascal Programming Tutorial Lesson 6 - Loops
	For loop
	While loop
	Repeat until loop
	Break and Continue

	Learn Pascal Programming Tutorial Lesson 7 - Arrays
	Learn Pascal Programming Tutorial Lesson 7 - Arrays
	Sorting arrays
	2D arrays

	Learn Pascal Programming Tutorial Lesson 8 - Types, Records and Sets
	Learn Pascal Programming Tutorial Lesson 8 - Types, Records and Sets
	Types

	Learn Pascal Programming Tutorial Lesson 9 - Procedures and Functions
	Learn Pascal Programming Tutorial Lesson 9 - Procedures and Functions
	Procedures
	Global and Local variables
	Functions

	Learn Pascal Programming Tutorial Lesson 10 - Text Files
	Learn Pascal Programming Tutorial Lesson 10 - Text Files

	Learn Pascal Programming Tutorial Lesson 11 - Data Files
	Learn Pascal Programming Tutorial Lesson 11 - Data Files

	Learn Pascal Programming Tutorial Lesson 12 - Units
	Learn Pascal Programming Tutorial Lesson 12 - Units

	Learn Pascal Programming Tutorial Lesson 13 - Pointers
	Learn Pascal Programming Tutorial Lesson 13 - Pointers
	What is a pointer?
	Declaring and using typed pointers
	Declaring and using untyped pointers

	Learn Pascal Programming Tutorial Lesson 14 - Linked Lists
	Learn Pascal Programming Tutorial Lesson 14 - Linked Lists
	What is a linked list
	Single linked lists
	Queues
	Stacks

